Kennwortmanager KeePassX Weiterentwicklung der Version 1
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
 
 
 
 
 
keepassx1/src/crypto/yarrow.cpp

458 lines
12 KiB

/***************************************************************************
* The yarrow pseudo-randomness genrator *
* extracted from nettle, the low-level cryptographics library *
* *
* Copyright (C) 2007 Tarek Saidi <tarek.saidi@arcor.de> *
* Copyright (C) 2001 Niels Müler *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; version 2 of the License. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#include <cassert>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include "yarrow.h"
#include "random.h"
#ifndef YARROW_DEBUG
#define YARROW_DEBUG 0
#endif
#if YARROW_DEBUG
#include <stdio.h>
#endif
#define SHA256_DIGEST_SIZE 32
#define AES_MAX_KEY_SIZE 32
/* Parameters */
/* An upper limit on the entropy (in bits) in one octet of sample
* data. */
#define YARROW_MULTIPLIER 4
/* Entropy threshold for reseeding from the fast pool */
#define YARROW_FAST_THRESHOLD 100
/* Entropy threshold for reseeding from the fast pool */
#define YARROW_SLOW_THRESHOLD 160
/* Number of sources that must exceed the threshold for slow reseed */
#define YARROW_SLOW_K 2
/* The number of iterations when reseeding, P_t in the yarrow paper.
* Should be chosen so that reseeding takes on the order of 0.1-1
* seconds. */
#define YARROW_RESEED_ITERATIONS 1500
/* Entropy estimates sticks to this value, it is treated as infinity
* in calculations. It should fit comfortably in an uint32_t, to avoid
* overflows. */
#define YARROW_MAX_ENTROPY 0x100000
/* Forward declarations */
static void
yarrow_fast_reseed(struct yarrow256_ctx *ctx);
static void
yarrow_gate(struct yarrow256_ctx *ctx);
void
yarrow256_init(struct yarrow256_ctx *ctx,
unsigned n,
struct yarrow_source *s)
{
unsigned i;
sha256_starts(&ctx->pools[0]);
sha256_starts(&ctx->pools[1]);
ctx->seeded = 0;
/* Not strictly, necessary, but it makes it easier to see if the
* values are sane. */
memset(ctx->seed_file, 0, YARROW256_SEED_FILE_SIZE);
memset(ctx->counter, 0, sizeof(ctx->counter));
ctx->nsources = n;
ctx->sources = s;
for (i = 0; i<n; i++)
{
ctx->sources[i].estimate[YARROW_FAST] = 0;
ctx->sources[i].estimate[YARROW_SLOW] = 0;
ctx->sources[i].next = YARROW_FAST;
}
}
void
yarrow256_seed(struct yarrow256_ctx *ctx,
unsigned length,
const quint8 *seed_file)
{
/* FIXME: Perhaps it's better to use assert ? */
if (!length)
return;
sha256_update(&ctx->pools[YARROW_FAST], seed_file, length);
yarrow_fast_reseed(ctx);
ctx->seeded = 1;
}
/* FIXME: Generalize so that it generates a few more blocks at a
* time. */
static void
yarrow_generate_block(struct yarrow256_ctx *ctx,
quint8 *block)
{
unsigned i;
//aes_encrypt(&ctx->key, sizeof(ctx->counter), block, ctx->counter);
aes_ecb_encrypt(ctx->counter,block,sizeof(ctx->counter),&ctx->key);
/* Increment counter, treating it as a big-endian number. This is
* machine independent, and follows appendix B of the NIST
* specification of cipher modes of operation.
*
* We could keep a representation of thy counter as 4 32-bit values,
* and write entire words (in big-endian byteorder) into the counter
* block, whenever they change. */
for (i = sizeof(ctx->counter); i--; )
{
if (++ctx->counter[i])
break;
}
}
static void
yarrow_iterate(quint8 *digest)
{
quint8 v0[SHA256_DIGEST_SIZE];
unsigned i;
memcpy(v0, digest, SHA256_DIGEST_SIZE);
/* When hashed inside the loop, i should run from 1 to
* YARROW_RESEED_ITERATIONS */
for (i = 0; ++i < YARROW_RESEED_ITERATIONS; )
{
quint8 count[4];
sha256_context hash;
sha256_starts(&hash);
/* Hash v_i | v_0 | i */
WRITE_UINT32(count, i);
sha256_update(&hash, digest, SHA256_DIGEST_SIZE);
sha256_update(&hash, v0, sizeof(v0));
sha256_update(&hash, count, sizeof(count));
sha256_finish(&hash,digest);
}
}
/* NOTE: The SHA-256 digest size equals the AES key size, so we need
* no "size adaptor". */
static void
yarrow_fast_reseed(struct yarrow256_ctx *ctx)
{
quint8 digest[SHA256_DIGEST_SIZE];
unsigned i;
#if YARROW_DEBUG
fprintf(stderr, "yarrow_fast_reseed\n");
#endif
/* We feed two block of output using the current key into the pool
* before emptying it. */
if (ctx->seeded)
{
quint8 blocks[AES_BLOCK_SIZE * 2];
yarrow_generate_block(ctx, blocks);
yarrow_generate_block(ctx, blocks + AES_BLOCK_SIZE);
sha256_update(&ctx->pools[YARROW_FAST],blocks,sizeof(blocks));
}
sha256_finish(&ctx->pools[YARROW_FAST],digest);
/* Iterate */
yarrow_iterate(digest);
aes_encrypt_key256(digest,&ctx->key);
/* Derive new counter value */
memset(ctx->counter, 0, sizeof(ctx->counter));
//aes_encrypt(&ctx->key, sizeof(ctx->counter), ctx->counter, ctx->counter);
aes_ecb_encrypt(ctx->counter,ctx->counter,sizeof(ctx->counter),&ctx->key);
/* Reset estimates. */
for (i = 0; i<ctx->nsources; i++)
ctx->sources[i].estimate[YARROW_FAST] = 0;
/* New seed file. */
/* FIXME: Extract this into a function of its own. */
for (i = 0; i < sizeof(ctx->seed_file); i+= AES_BLOCK_SIZE)
yarrow_generate_block(ctx, ctx->seed_file + i);
yarrow_gate(ctx);
}
static void
yarrow_slow_reseed(struct yarrow256_ctx *ctx)
{
quint8 digest[SHA256_DIGEST_SIZE];
unsigned i;
#if YARROW_DEBUG
fprintf(stderr, "yarrow_slow_reseed\n");
#endif
/* Get digest of the slow pool*/
sha256_finish(&ctx->pools[YARROW_SLOW], digest);
/* Feed it into the fast pool */
sha256_update(&ctx->pools[YARROW_FAST],digest, sizeof(digest));
yarrow_fast_reseed(ctx);
/* Reset estimates. */
for (i = 0; i<ctx->nsources; i++)
ctx->sources[i].estimate[YARROW_SLOW] = 0;
}
int
yarrow256_update(struct yarrow256_ctx *ctx,
unsigned source_index, unsigned entropy,
unsigned length, const quint8 *data)
{
enum yarrow_pool_id current;
struct yarrow_source *source;
assert(source_index < ctx->nsources);
if (!length)
/* Nothing happens */
return 0;
source = &ctx->sources[source_index];
if (!ctx->seeded)
/* While seeding, use the slow pool */
current = YARROW_SLOW;
else
{
current = source->next;
source->next = (yarrow_pool_id)!source->next;
}
sha256_update(&ctx->pools[current],data,length);
/* NOTE: We should be careful to avoid overflows in the estimates. */
if (source->estimate[current] < YARROW_MAX_ENTROPY)
{
if (entropy > YARROW_MAX_ENTROPY)
entropy = YARROW_MAX_ENTROPY;
if ( (length < (YARROW_MAX_ENTROPY / YARROW_MULTIPLIER))
&& (entropy > YARROW_MULTIPLIER * length) )
entropy = YARROW_MULTIPLIER * length;
/* FIXME: Calling a more sophisticated estimater should be done
* here. */
entropy += source->estimate[current];
if (entropy > YARROW_MAX_ENTROPY)
entropy = YARROW_MAX_ENTROPY;
source->estimate[current] = entropy;
}
/* Check for seed/reseed */
switch(current)
{
case YARROW_FAST:
#if YARROW_DEBUG
fprintf(stderr,
"yarrow256_update: source_index = %d,\n"
" fast pool estimate = %d\n",
source_index, source->estimate[YARROW_FAST]);
#endif
if (source->estimate[YARROW_FAST] >= YARROW_FAST_THRESHOLD)
{
yarrow_fast_reseed(ctx);
return 1;
}
else
return 0;
case YARROW_SLOW:
{
/* FIXME: This is somewhat inefficient. It would be better to
* either maintain the count, or do this loop only if the
* current source just crossed the threshold. */
if (!yarrow256_needed_sources(ctx))
{
yarrow_slow_reseed(ctx);
ctx->seeded = 1;
return 1;
}
else
return 0;
}
default:
abort();
}
}
static void
yarrow_gate(struct yarrow256_ctx *ctx)
{
quint8 key[AES_MAX_KEY_SIZE];
unsigned i;
for (i = 0; i < sizeof(key); i+= AES_BLOCK_SIZE)
yarrow_generate_block(ctx, key + i);
aes_encrypt_key256(key,&ctx->key);
}
void
yarrow256_random(struct yarrow256_ctx *ctx, unsigned length, quint8 *dst)
{
assert(ctx->seeded);
while (length >= AES_BLOCK_SIZE)
{
yarrow_generate_block(ctx, dst);
dst += AES_BLOCK_SIZE;
length -= AES_BLOCK_SIZE;
}
if (length)
{
quint8 buffer[AES_BLOCK_SIZE];
assert(length < AES_BLOCK_SIZE);
yarrow_generate_block(ctx, buffer);
memcpy(dst, buffer, length);
}
yarrow_gate(ctx);
}
int
yarrow256_is_seeded(struct yarrow256_ctx *ctx)
{
return ctx->seeded;
}
unsigned
yarrow256_needed_sources(struct yarrow256_ctx *ctx)
{
/* FIXME: This is somewhat inefficient. It would be better to
* either maintain the count, or do this loop only if the
* current source just crossed the threshold. */
unsigned k, i;
for (i = k = 0; i < ctx->nsources; i++)
if (ctx->sources[i].estimate[YARROW_SLOW] >= YARROW_SLOW_THRESHOLD)
k++;
#if YARROW_DEBUG
fprintf(stderr,
"yarrow256_needed_sources: source_index = %d,\n"
" slow pool estimate = %d,\n"
" number of sources above threshold = %d\n",
source_index, source->estimate[YARROW_SLOW], k);
#endif
return (k < YARROW_SLOW_K) ? (YARROW_SLOW_K - k) : 0;
}
void
yarrow256_force_reseed(struct yarrow256_ctx *ctx)
{
yarrow_slow_reseed(ctx);
}
struct yarrow256_ctx WeakCtx;
struct yarrow256_ctx StrongCtx;
struct yarrow_source WeakSrc[2];
struct yarrow_source StrongSrc[2];
void initYarrow(){
yarrow256_init(&WeakCtx,2,WeakSrc);
yarrow256_init(&StrongCtx,2,StrongSrc);
quint8 buffer[100];
for (int i=0; i<2; i++){
getEntropy(buffer,100);
yarrowUpdateWeak(i,100*8,100,buffer);
}
}
void yarrowUpdateWeak(unsigned source, unsigned entropy, unsigned length, const quint8 *data){
yarrow256_update(&WeakCtx,source,entropy,length,data);
}
void yarrowUpdateStrong(unsigned source, unsigned entropy, unsigned length, const quint8 *data){
yarrow256_update(&StrongCtx,source,entropy,length,data);
}
void randomize(void* buffer, unsigned int length){
if(!yarrow256_is_seeded(&StrongCtx))
yarrow256_random(&WeakCtx,length,(quint8*)buffer);
else
yarrow256_random(&StrongCtx,length,(quint8*)buffer);
}
void strongRandomize(void* buffer, unsigned int length){
Q_ASSERT(yarrow256_is_seeded(&StrongCtx));
for(uint i=0; i<length;i++)
yarrow256_random(&StrongCtx,1,(quint8*)buffer+i);
}
void reseedStrongPool(quint8* buffer1,int l1,quint8* buffer2,int l2){
if(l1>l2*4){
yarrow256_update(&StrongCtx,0,100,100,buffer1);
buffer1=buffer1+100;
l1=l1-100;
}
else{
yarrow256_update(&StrongCtx,1,100,25,buffer2);
buffer2=buffer2+25;
l2=l2-25;
}
if(l1>l2*4){
yarrow256_update(&StrongCtx,0,160,160,buffer1);
l1-=160;
buffer1+=160;
yarrow256_update(&StrongCtx,1,l1,l1,buffer1);
yarrow256_update(&StrongCtx,1,4*l2,l2,buffer2);
}
else{
yarrow256_update(&StrongCtx,0,160,40,buffer2);
l2-=40;
buffer2+=40;
yarrow256_update(&StrongCtx,1,l2*4,l2,buffer2);
yarrow256_update(&StrongCtx,1,l1,l1,buffer1);
}
}