/* * FIPS-180-2 compliant SHA-256 implementation * * Copyright (C) 2001-2003 Christophe Devine * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include "sha256.h" #define GET_Q_UINT32(n,b,i) \ { \ (n) = ( (uint32) (b)[(i) ] << 24 ) \ | ( (uint32) (b)[(i) + 1] << 16 ) \ | ( (uint32) (b)[(i) + 2] << 8 ) \ | ( (uint32) (b)[(i) + 3] ); \ } #define PUT_Q_UINT32(n,b,i) \ { \ (b)[(i) ] = (uint8) ( (n) >> 24 ); \ (b)[(i) + 1] = (uint8) ( (n) >> 16 ); \ (b)[(i) + 2] = (uint8) ( (n) >> 8 ); \ (b)[(i) + 3] = (uint8) ( (n) ); \ } void sha256_starts( sha256_context *ctx ) { ctx->total[0] = 0; ctx->total[1] = 0; ctx->state[0] = 0x6A09E667; ctx->state[1] = 0xBB67AE85; ctx->state[2] = 0x3C6EF372; ctx->state[3] = 0xA54FF53A; ctx->state[4] = 0x510E527F; ctx->state[5] = 0x9B05688C; ctx->state[6] = 0x1F83D9AB; ctx->state[7] = 0x5BE0CD19; } void sha256_process( sha256_context *ctx, uint8 data[64] ) { uint32 temp1, temp2, W[64]; uint32 A, B, C, D, E, F, G, H; GET_Q_UINT32( W[0], data, 0 ); GET_Q_UINT32( W[1], data, 4 ); GET_Q_UINT32( W[2], data, 8 ); GET_Q_UINT32( W[3], data, 12 ); GET_Q_UINT32( W[4], data, 16 ); GET_Q_UINT32( W[5], data, 20 ); GET_Q_UINT32( W[6], data, 24 ); GET_Q_UINT32( W[7], data, 28 ); GET_Q_UINT32( W[8], data, 32 ); GET_Q_UINT32( W[9], data, 36 ); GET_Q_UINT32( W[10], data, 40 ); GET_Q_UINT32( W[11], data, 44 ); GET_Q_UINT32( W[12], data, 48 ); GET_Q_UINT32( W[13], data, 52 ); GET_Q_UINT32( W[14], data, 56 ); GET_Q_UINT32( W[15], data, 60 ); #define SHR(x,n) ((x & 0xFFFFFFFF) >> n) #define ROTR(x,n) (SHR(x,n) | (x << (32 - n))) #define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3)) #define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10)) #define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22)) #define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25)) #define F0(x,y,z) ((x & y) | (z & (x | y))) #define F1(x,y,z) (z ^ (x & (y ^ z))) #define R(t) \ ( \ W[t] = S1(W[t - 2]) + W[t - 7] + \ S0(W[t - 15]) + W[t - 16] \ ) #define P(a,b,c,d,e,f,g,h,x,K) \ { \ temp1 = h + S3(e) + F1(e,f,g) + K + x; \ temp2 = S2(a) + F0(a,b,c); \ d += temp1; h = temp1 + temp2; \ } A = ctx->state[0]; B = ctx->state[1]; C = ctx->state[2]; D = ctx->state[3]; E = ctx->state[4]; F = ctx->state[5]; G = ctx->state[6]; H = ctx->state[7]; P( A, B, C, D, E, F, G, H, W[ 0], 0x428A2F98 ); P( H, A, B, C, D, E, F, G, W[ 1], 0x71374491 ); P( G, H, A, B, C, D, E, F, W[ 2], 0xB5C0FBCF ); P( F, G, H, A, B, C, D, E, W[ 3], 0xE9B5DBA5 ); P( E, F, G, H, A, B, C, D, W[ 4], 0x3956C25B ); P( D, E, F, G, H, A, B, C, W[ 5], 0x59F111F1 ); P( C, D, E, F, G, H, A, B, W[ 6], 0x923F82A4 ); P( B, C, D, E, F, G, H, A, W[ 7], 0xAB1C5ED5 ); P( A, B, C, D, E, F, G, H, W[ 8], 0xD807AA98 ); P( H, A, B, C, D, E, F, G, W[ 9], 0x12835B01 ); P( G, H, A, B, C, D, E, F, W[10], 0x243185BE ); P( F, G, H, A, B, C, D, E, W[11], 0x550C7DC3 ); P( E, F, G, H, A, B, C, D, W[12], 0x72BE5D74 ); P( D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE ); P( C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7 ); P( B, C, D, E, F, G, H, A, W[15], 0xC19BF174 ); P( A, B, C, D, E, F, G, H, R(16), 0xE49B69C1 ); P( H, A, B, C, D, E, F, G, R(17), 0xEFBE4786 ); P( G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6 ); P( F, G, H, A, B, C, D, E, R(19), 0x240CA1CC ); P( E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F ); P( D, E, F, G, H, A, B, C, R(21), 0x4A7484AA ); P( C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC ); P( B, C, D, E, F, G, H, A, R(23), 0x76F988DA ); P( A, B, C, D, E, F, G, H, R(24), 0x983E5152 ); P( H, A, B, C, D, E, F, G, R(25), 0xA831C66D ); P( G, H, A, B, C, D, E, F, R(26), 0xB00327C8 ); P( F, G, H, A, B, C, D, E, R(27), 0xBF597FC7 ); P( E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3 ); P( D, E, F, G, H, A, B, C, R(29), 0xD5A79147 ); P( C, D, E, F, G, H, A, B, R(30), 0x06CA6351 ); P( B, C, D, E, F, G, H, A, R(31), 0x14292967 ); P( A, B, C, D, E, F, G, H, R(32), 0x27B70A85 ); P( H, A, B, C, D, E, F, G, R(33), 0x2E1B2138 ); P( G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC ); P( F, G, H, A, B, C, D, E, R(35), 0x53380D13 ); P( E, F, G, H, A, B, C, D, R(36), 0x650A7354 ); P( D, E, F, G, H, A, B, C, R(37), 0x766A0ABB ); P( C, D, E, F, G, H, A, B, R(38), 0x81C2C92E ); P( B, C, D, E, F, G, H, A, R(39), 0x92722C85 ); P( A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1 ); P( H, A, B, C, D, E, F, G, R(41), 0xA81A664B ); P( G, H, A, B, C, D, E, F, R(42), 0xC24B8B70 ); P( F, G, H, A, B, C, D, E, R(43), 0xC76C51A3 ); P( E, F, G, H, A, B, C, D, R(44), 0xD192E819 ); P( D, E, F, G, H, A, B, C, R(45), 0xD6990624 ); P( C, D, E, F, G, H, A, B, R(46), 0xF40E3585 ); P( B, C, D, E, F, G, H, A, R(47), 0x106AA070 ); P( A, B, C, D, E, F, G, H, R(48), 0x19A4C116 ); P( H, A, B, C, D, E, F, G, R(49), 0x1E376C08 ); P( G, H, A, B, C, D, E, F, R(50), 0x2748774C ); P( F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5 ); P( E, F, G, H, A, B, C, D, R(52), 0x391C0CB3 ); P( D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A ); P( C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F ); P( B, C, D, E, F, G, H, A, R(55), 0x682E6FF3 ); P( A, B, C, D, E, F, G, H, R(56), 0x748F82EE ); P( H, A, B, C, D, E, F, G, R(57), 0x78A5636F ); P( G, H, A, B, C, D, E, F, R(58), 0x84C87814 ); P( F, G, H, A, B, C, D, E, R(59), 0x8CC70208 ); P( E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA ); P( D, E, F, G, H, A, B, C, R(61), 0xA4506CEB ); P( C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7 ); P( B, C, D, E, F, G, H, A, R(63), 0xC67178F2 ); ctx->state[0] += A; ctx->state[1] += B; ctx->state[2] += C; ctx->state[3] += D; ctx->state[4] += E; ctx->state[5] += F; ctx->state[6] += G; ctx->state[7] += H; } void sha256_update( sha256_context *ctx, uint8 *input, uint32 length ) { uint32 left, fill; if( ! length ) return; left = ctx->total[0] & 0x3F; fill = 64 - left; ctx->total[0] += length; ctx->total[0] &= 0xFFFFFFFF; if( ctx->total[0] < length ) ctx->total[1]++; if( left && length >= fill ) { memcpy( (void *) (ctx->buffer + left), (void *) input, fill ); sha256_process( ctx, ctx->buffer ); length -= fill; input += fill; left = 0; } while( length >= 64 ) { sha256_process( ctx, input ); length -= 64; input += 64; } if( length ) { memcpy( (void *) (ctx->buffer + left), (void *) input, length ); } } static uint8 sha256_padding[64] = { 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; void sha256_finish( sha256_context *ctx, uint8 digest[32] ) { uint32 last, padn; uint32 high, low; uint8 msglen[8]; high = ( ctx->total[0] >> 29 ) | ( ctx->total[1] << 3 ); low = ( ctx->total[0] << 3 ); PUT_Q_UINT32( high, msglen, 0 ); PUT_Q_UINT32( low, msglen, 4 ); last = ctx->total[0] & 0x3F; padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last ); sha256_update( ctx, sha256_padding, padn ); sha256_update( ctx, msglen, 8 ); PUT_Q_UINT32( ctx->state[0], digest, 0 ); PUT_Q_UINT32( ctx->state[1], digest, 4 ); PUT_Q_UINT32( ctx->state[2], digest, 8 ); PUT_Q_UINT32( ctx->state[3], digest, 12 ); PUT_Q_UINT32( ctx->state[4], digest, 16 ); PUT_Q_UINT32( ctx->state[5], digest, 20 ); PUT_Q_UINT32( ctx->state[6], digest, 24 ); PUT_Q_UINT32( ctx->state[7], digest, 28 ); } #ifdef TEST #include #include /* * those are the standard FIPS-180-2 test vectors */ static char *msg[] = { "abc", "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", NULL }; static char *val[] = { "ba7816bf8f01cfea414140de5dae2223" \ "b00361a396177a9cb410ff61f20015ad", "248d6a61d20638b8e5c026930c3e6039" \ "a33ce45964ff2167f6ecedd419db06c1", "cdc76e5c9914fb9281a1c7e284d73e67" \ "f1809a48a497200e046d39ccc7112cd0" }; int main( int argc, char *argv[] ) { FILE *f; int i, j; char output[65]; sha256_context ctx; unsigned char buf[1000]; unsigned char sha256sum[32]; if( argc < 2 ) { printf( "\n SHA-256 Validation Tests:\n\n" ); for( i = 0; i < 3; i++ ) { printf( " Test %d ", i + 1 ); sha256_starts( &ctx ); if( i < 2 ) { sha256_update( &ctx, (uint8 *) msg[i], strlen( msg[i] ) ); } else { memset( buf, 'a', 1000 ); for( j = 0; j < 1000; j++ ) { sha256_update( &ctx, (uint8 *) buf, 1000 ); } } sha256_finish( &ctx, sha256sum ); for( j = 0; j < 32; j++ ) { sprintf( output + j * 2, "%02x", sha256sum[j] ); } if( memcmp( output, val[i], 64 ) ) { printf( "failed!\n" ); return( 1 ); } printf( "passed.\n" ); } printf( "\n" ); } else { if( ! ( f = fopen( argv[1], "rb" ) ) ) { perror( "fopen" ); return( 1 ); } sha256_starts( &ctx ); while( ( i = fread( buf, 1, sizeof( buf ), f ) ) > 0 ) { sha256_update( &ctx, buf, i ); } sha256_finish( &ctx, sha256sum ); for( j = 0; j < 32; j++ ) { printf( "%02x", sha256sum[j] ); } printf( " %s\n", argv[1] ); } return( 0 ); } #endif