Kennwortmanager KeePassX Weiterentwicklung der Version 1
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
keepassx1/src/crypto/aeskey.c

567 lines
17 KiB

/**************************************************************************
* *
* Copyright (C) 2007 by Tarek Saidi <tarek.saidi@arcor.de> *
* Copyright (c) 2003 Dr Brian Gladman, Worcester, UK *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; version 2 of the License. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#include "aesopt.h"
#include "aestab.h"
#ifdef USE_VIA_ACE_IF_PRESENT
#include "via_ace.h"
#endif
#if defined(__cplusplus)
extern "C"
{
#endif
/* Initialise the key schedule from the user supplied key. The key
length can be specified in bytes, with legal values of 16, 24
and 32, or in bits, with legal values of 128, 192 and 256. These
values correspond with Nk values of 4, 6 and 8 respectively.
The following macros implement a single cycle in the key
schedule generation process. The number of cycles needed
for each cx->n_col and nk value is:
nk = 4 5 6 7 8
------------------------------
cx->n_col = 4 10 9 8 7 7
cx->n_col = 5 14 11 10 9 9
cx->n_col = 6 19 15 12 11 11
cx->n_col = 7 21 19 16 13 14
cx->n_col = 8 29 23 19 17 14
*/
#if (FUNCS_IN_C & ENC_KEYING_IN_C)
#if defined(AES_128) || defined(AES_VAR)
#define ke4(k,i) \
{ k[4*(i)+4] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; \
k[4*(i)+5] = ss[1] ^= ss[0]; \
k[4*(i)+6] = ss[2] ^= ss[1]; \
k[4*(i)+7] = ss[3] ^= ss[2]; \
}
aes_rval aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1])
{ uint_32t ss[4];
cx->ks[0] = ss[0] = word_in(key, 0);
cx->ks[1] = ss[1] = word_in(key, 1);
cx->ks[2] = ss[2] = word_in(key, 2);
cx->ks[3] = ss[3] = word_in(key, 3);
#if ENC_UNROLL == NONE
{ uint_32t i;
for(i = 0; i < 9; ++i)
ke4(cx->ks, i);
}
#else
ke4(cx->ks, 0); ke4(cx->ks, 1);
ke4(cx->ks, 2); ke4(cx->ks, 3);
ke4(cx->ks, 4); ke4(cx->ks, 5);
ke4(cx->ks, 6); ke4(cx->ks, 7);
ke4(cx->ks, 8);
#endif
ke4(cx->ks, 9);
cx->inf.l = 0;
cx->inf.b[0] = 10 * 16;
#ifdef USE_VIA_ACE_IF_PRESENT
if(VIA_ACE_AVAILABLE)
cx->inf.b[1] = 0xff;
#endif
#if defined( AES_ERR_CHK )
return EXIT_SUCCESS;
#endif
}
#endif
#if defined(AES_192) || defined(AES_VAR)
#define kef6(k,i) \
{ k[6*(i)+ 6] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; \
k[6*(i)+ 7] = ss[1] ^= ss[0]; \
k[6*(i)+ 8] = ss[2] ^= ss[1]; \
k[6*(i)+ 9] = ss[3] ^= ss[2]; \
}
#define ke6(k,i) \
{ kef6(k,i); \
k[6*(i)+10] = ss[4] ^= ss[3]; \
k[6*(i)+11] = ss[5] ^= ss[4]; \
}
aes_rval aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1])
{ uint_32t ss[6];
cx->ks[0] = ss[0] = word_in(key, 0);
cx->ks[1] = ss[1] = word_in(key, 1);
cx->ks[2] = ss[2] = word_in(key, 2);
cx->ks[3] = ss[3] = word_in(key, 3);
cx->ks[4] = ss[4] = word_in(key, 4);
cx->ks[5] = ss[5] = word_in(key, 5);
#if ENC_UNROLL == NONE
{ uint_32t i;
for(i = 0; i < 7; ++i)
ke6(cx->ks, i);
}
#else
ke6(cx->ks, 0); ke6(cx->ks, 1);
ke6(cx->ks, 2); ke6(cx->ks, 3);
ke6(cx->ks, 4); ke6(cx->ks, 5);
ke6(cx->ks, 6);
#endif
kef6(cx->ks, 7);
cx->inf.l = 0;
cx->inf.b[0] = 12 * 16;
#ifdef USE_VIA_ACE_IF_PRESENT
if(VIA_ACE_AVAILABLE)
cx->inf.b[1] = 0xff;
#endif
#if defined( AES_ERR_CHK )
return EXIT_SUCCESS;
#endif
}
#endif
#if defined(AES_256) || defined(AES_VAR)
#define kef8(k,i) \
{ k[8*(i)+ 8] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; \
k[8*(i)+ 9] = ss[1] ^= ss[0]; \
k[8*(i)+10] = ss[2] ^= ss[1]; \
k[8*(i)+11] = ss[3] ^= ss[2]; \
}
#define ke8(k,i) \
{ kef8(k,i); \
k[8*(i)+12] = ss[4] ^= ls_box(ss[3],0); \
k[8*(i)+13] = ss[5] ^= ss[4]; \
k[8*(i)+14] = ss[6] ^= ss[5]; \
k[8*(i)+15] = ss[7] ^= ss[6]; \
}
aes_rval aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1])
{ uint_32t ss[8];
cx->ks[0] = ss[0] = word_in(key, 0);
cx->ks[1] = ss[1] = word_in(key, 1);
cx->ks[2] = ss[2] = word_in(key, 2);
cx->ks[3] = ss[3] = word_in(key, 3);
cx->ks[4] = ss[4] = word_in(key, 4);
cx->ks[5] = ss[5] = word_in(key, 5);
cx->ks[6] = ss[6] = word_in(key, 6);
cx->ks[7] = ss[7] = word_in(key, 7);
#if ENC_UNROLL == NONE
{ uint_32t i;
for(i = 0; i < 6; ++i)
ke8(cx->ks, i);
}
#else
ke8(cx->ks, 0); ke8(cx->ks, 1);
ke8(cx->ks, 2); ke8(cx->ks, 3);
ke8(cx->ks, 4); ke8(cx->ks, 5);
#endif
kef8(cx->ks, 6);
cx->inf.l = 0;
cx->inf.b[0] = 14 * 16;
#ifdef USE_VIA_ACE_IF_PRESENT
if(VIA_ACE_AVAILABLE)
cx->inf.b[1] = 0xff;
#endif
#if defined( AES_ERR_CHK )
return EXIT_SUCCESS;
#endif
}
#endif
#if defined(AES_VAR)
aes_rval aes_encrypt_key(const unsigned char *key, int key_len, aes_encrypt_ctx cx[1])
{
switch(key_len)
{
#if defined( AES_ERR_CHK )
case 16: case 128: return aes_encrypt_key128(key, cx);
case 24: case 192: return aes_encrypt_key192(key, cx);
case 32: case 256: return aes_encrypt_key256(key, cx);
default: return EXIT_FAILURE;
#else
case 16: case 128: aes_encrypt_key128(key, cx); return;
case 24: case 192: aes_encrypt_key192(key, cx); return;
case 32: case 256: aes_encrypt_key256(key, cx); return;
#endif
}
}
#endif
#endif
#if (FUNCS_IN_C & DEC_KEYING_IN_C)
/* this is used to store the decryption round keys */
/* in forward or reverse order */
#ifdef AES_REV_DKS
#define v(n,i) ((n) - (i) + 2 * ((i) & 3))
#else
#define v(n,i) (i)
#endif
#if DEC_ROUND == NO_TABLES
#define ff(x) (x)
#else
#define ff(x) inv_mcol(x)
#if defined( dec_imvars )
#define d_vars dec_imvars
#endif
#endif
#if defined(AES_128) || defined(AES_VAR)
#define k4e(k,i) \
{ k[v(40,(4*(i))+4)] = ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; \
k[v(40,(4*(i))+5)] = ss[1] ^= ss[0]; \
k[v(40,(4*(i))+6)] = ss[2] ^= ss[1]; \
k[v(40,(4*(i))+7)] = ss[3] ^= ss[2]; \
}
#if 1
#define kdf4(k,i) \
{ ss[0] = ss[0] ^ ss[2] ^ ss[1] ^ ss[3]; \
ss[1] = ss[1] ^ ss[3]; \
ss[2] = ss[2] ^ ss[3]; \
ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; \
ss[i % 4] ^= ss[4]; \
ss[4] ^= k[v(40,(4*(i)))]; k[v(40,(4*(i))+4)] = ff(ss[4]); \
ss[4] ^= k[v(40,(4*(i))+1)]; k[v(40,(4*(i))+5)] = ff(ss[4]); \
ss[4] ^= k[v(40,(4*(i))+2)]; k[v(40,(4*(i))+6)] = ff(ss[4]); \
ss[4] ^= k[v(40,(4*(i))+3)]; k[v(40,(4*(i))+7)] = ff(ss[4]); \
}
#define kd4(k,i) \
{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; \
ss[i % 4] ^= ss[4]; ss[4] = ff(ss[4]); \
k[v(40,(4*(i))+4)] = ss[4] ^= k[v(40,(4*(i)))]; \
k[v(40,(4*(i))+5)] = ss[4] ^= k[v(40,(4*(i))+1)]; \
k[v(40,(4*(i))+6)] = ss[4] ^= k[v(40,(4*(i))+2)]; \
k[v(40,(4*(i))+7)] = ss[4] ^= k[v(40,(4*(i))+3)]; \
}
#define kdl4(k,i) \
{ ss[4] = ls_box(ss[(i+3) % 4], 3) ^ t_use(r,c)[i]; ss[i % 4] ^= ss[4]; \
k[v(40,(4*(i))+4)] = (ss[0] ^= ss[1]) ^ ss[2] ^ ss[3]; \
k[v(40,(4*(i))+5)] = ss[1] ^ ss[3]; \
k[v(40,(4*(i))+6)] = ss[0]; \
k[v(40,(4*(i))+7)] = ss[1]; \
}
#else
#define kdf4(k,i) \
{ ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[v(40,(4*(i))+ 4)] = ff(ss[0]); \
ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ff(ss[1]); \
ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ff(ss[2]); \
ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ff(ss[3]); \
}
#define kd4(k,i) \
{ ss[4] = ls_box(ss[3],3) ^ t_use(r,c)[i]; \
ss[0] ^= ss[4]; ss[4] = ff(ss[4]); k[v(40,(4*(i))+ 4)] = ss[4] ^= k[v(40,(4*(i)))]; \
ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ss[4] ^= k[v(40,(4*(i))+ 1)]; \
ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ss[4] ^= k[v(40,(4*(i))+ 2)]; \
ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ss[4] ^= k[v(40,(4*(i))+ 3)]; \
}
#define kdl4(k,i) \
{ ss[0] ^= ls_box(ss[3],3) ^ t_use(r,c)[i]; k[v(40,(4*(i))+ 4)] = ss[0]; \
ss[1] ^= ss[0]; k[v(40,(4*(i))+ 5)] = ss[1]; \
ss[2] ^= ss[1]; k[v(40,(4*(i))+ 6)] = ss[2]; \
ss[3] ^= ss[2]; k[v(40,(4*(i))+ 7)] = ss[3]; \
}
#endif
aes_rval aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1])
{ uint_32t ss[5];
#if defined( d_vars )
d_vars;
#endif
cx->ks[v(40,(0))] = ss[0] = word_in(key, 0);
cx->ks[v(40,(1))] = ss[1] = word_in(key, 1);
cx->ks[v(40,(2))] = ss[2] = word_in(key, 2);
cx->ks[v(40,(3))] = ss[3] = word_in(key, 3);
#if DEC_UNROLL == NONE
{ uint_32t i;
for(i = 0; i < 10; ++i)
k4e(cx->ks, i);
#if !(DEC_ROUND == NO_TABLES)
for(i = N_COLS; i < 10 * N_COLS; ++i)
cx->ks[i] = inv_mcol(cx->ks[i]);
#endif
}
#else
kdf4(cx->ks, 0); kd4(cx->ks, 1);
kd4(cx->ks, 2); kd4(cx->ks, 3);
kd4(cx->ks, 4); kd4(cx->ks, 5);
kd4(cx->ks, 6); kd4(cx->ks, 7);
kd4(cx->ks, 8); kdl4(cx->ks, 9);
#endif
cx->inf.l = 0;
cx->inf.b[0] = 10 * 16;
#ifdef USE_VIA_ACE_IF_PRESENT
if(VIA_ACE_AVAILABLE)
cx->inf.b[1] = 0xff;
#endif
#if defined( AES_ERR_CHK )
return EXIT_SUCCESS;
#endif
}
#endif
#if defined(AES_192) || defined(AES_VAR)
#define k6ef(k,i) \
{ k[v(48,(6*(i))+ 6)] = ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; \
k[v(48,(6*(i))+ 7)] = ss[1] ^= ss[0]; \
k[v(48,(6*(i))+ 8)] = ss[2] ^= ss[1]; \
k[v(48,(6*(i))+ 9)] = ss[3] ^= ss[2]; \
}
#define k6e(k,i) \
{ k6ef(k,i); \
k[v(48,(6*(i))+10)] = ss[4] ^= ss[3]; \
k[v(48,(6*(i))+11)] = ss[5] ^= ss[4]; \
}
#define kdf6(k,i) \
{ ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[v(48,(6*(i))+ 6)] = ff(ss[0]); \
ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ff(ss[1]); \
ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ff(ss[2]); \
ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ff(ss[3]); \
ss[4] ^= ss[3]; k[v(48,(6*(i))+10)] = ff(ss[4]); \
ss[5] ^= ss[4]; k[v(48,(6*(i))+11)] = ff(ss[5]); \
}
#define kd6(k,i) \
{ ss[6] = ls_box(ss[5],3) ^ t_use(r,c)[i]; \
ss[0] ^= ss[6]; ss[6] = ff(ss[6]); k[v(48,(6*(i))+ 6)] = ss[6] ^= k[v(48,(6*(i)))]; \
ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ss[6] ^= k[v(48,(6*(i))+ 1)]; \
ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ss[6] ^= k[v(48,(6*(i))+ 2)]; \
ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ss[6] ^= k[v(48,(6*(i))+ 3)]; \
ss[4] ^= ss[3]; k[v(48,(6*(i))+10)] = ss[6] ^= k[v(48,(6*(i))+ 4)]; \
ss[5] ^= ss[4]; k[v(48,(6*(i))+11)] = ss[6] ^= k[v(48,(6*(i))+ 5)]; \
}
#define kdl6(k,i) \
{ ss[0] ^= ls_box(ss[5],3) ^ t_use(r,c)[i]; k[v(48,(6*(i))+ 6)] = ss[0]; \
ss[1] ^= ss[0]; k[v(48,(6*(i))+ 7)] = ss[1]; \
ss[2] ^= ss[1]; k[v(48,(6*(i))+ 8)] = ss[2]; \
ss[3] ^= ss[2]; k[v(48,(6*(i))+ 9)] = ss[3]; \
}
aes_rval aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1])
{ uint_32t ss[7];
#if defined( d_vars )
d_vars;
#endif
cx->ks[v(48,(0))] = ss[0] = word_in(key, 0);
cx->ks[v(48,(1))] = ss[1] = word_in(key, 1);
cx->ks[v(48,(2))] = ss[2] = word_in(key, 2);
cx->ks[v(48,(3))] = ss[3] = word_in(key, 3);
#if DEC_UNROLL == NONE
cx->ks[v(48,(4))] = ss[4] = word_in(key, 4);
cx->ks[v(48,(5))] = ss[5] = word_in(key, 5);
{ uint_32t i;
for(i = 0; i < 7; ++i)
k6e(cx->ks, i);
k6ef(cx->ks, 7);
#if !(DEC_ROUND == NO_TABLES)
for(i = N_COLS; i < 12 * N_COLS; ++i)
cx->ks[i] = inv_mcol(cx->ks[i]);
#endif
}
#else
cx->ks[v(48,(4))] = ff(ss[4] = word_in(key, 4));
cx->ks[v(48,(5))] = ff(ss[5] = word_in(key, 5));
kdf6(cx->ks, 0); kd6(cx->ks, 1);
kd6(cx->ks, 2); kd6(cx->ks, 3);
kd6(cx->ks, 4); kd6(cx->ks, 5);
kd6(cx->ks, 6); kdl6(cx->ks, 7);
#endif
cx->inf.l = 0;
cx->inf.b[0] = 12 * 16;
#ifdef USE_VIA_ACE_IF_PRESENT
if(VIA_ACE_AVAILABLE)
cx->inf.b[1] = 0xff;
#endif
#if defined( AES_ERR_CHK )
return EXIT_SUCCESS;
#endif
}
#endif
#if defined(AES_256) || defined(AES_VAR)
#define k8ef(k,i) \
{ k[v(56,(8*(i))+ 8)] = ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; \
k[v(56,(8*(i))+ 9)] = ss[1] ^= ss[0]; \
k[v(56,(8*(i))+10)] = ss[2] ^= ss[1]; \
k[v(56,(8*(i))+11)] = ss[3] ^= ss[2]; \
}
#define k8e(k,i) \
{ k8ef(k,i); \
k[v(56,(8*(i))+12)] = ss[4] ^= ls_box(ss[3],0); \
k[v(56,(8*(i))+13)] = ss[5] ^= ss[4]; \
k[v(56,(8*(i))+14)] = ss[6] ^= ss[5]; \
k[v(56,(8*(i))+15)] = ss[7] ^= ss[6]; \
}
#define kdf8(k,i) \
{ ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[v(56,(8*(i))+ 8)] = ff(ss[0]); \
ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ff(ss[1]); \
ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ff(ss[2]); \
ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ff(ss[3]); \
ss[4] ^= ls_box(ss[3],0); k[v(56,(8*(i))+12)] = ff(ss[4]); \
ss[5] ^= ss[4]; k[v(56,(8*(i))+13)] = ff(ss[5]); \
ss[6] ^= ss[5]; k[v(56,(8*(i))+14)] = ff(ss[6]); \
ss[7] ^= ss[6]; k[v(56,(8*(i))+15)] = ff(ss[7]); \
}
#define kd8(k,i) \
{ ss[8] = ls_box(ss[7],3) ^ t_use(r,c)[i]; \
ss[0] ^= ss[8]; ss[8] = ff(ss[8]); k[v(56,(8*(i))+ 8)] = ss[8] ^= k[v(56,(8*(i)))]; \
ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ss[8] ^= k[v(56,(8*(i))+ 1)]; \
ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ss[8] ^= k[v(56,(8*(i))+ 2)]; \
ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ss[8] ^= k[v(56,(8*(i))+ 3)]; \
ss[8] = ls_box(ss[3],0); \
ss[4] ^= ss[8]; ss[8] = ff(ss[8]); k[v(56,(8*(i))+12)] = ss[8] ^= k[v(56,(8*(i))+ 4)]; \
ss[5] ^= ss[4]; k[v(56,(8*(i))+13)] = ss[8] ^= k[v(56,(8*(i))+ 5)]; \
ss[6] ^= ss[5]; k[v(56,(8*(i))+14)] = ss[8] ^= k[v(56,(8*(i))+ 6)]; \
ss[7] ^= ss[6]; k[v(56,(8*(i))+15)] = ss[8] ^= k[v(56,(8*(i))+ 7)]; \
}
#define kdl8(k,i) \
{ ss[0] ^= ls_box(ss[7],3) ^ t_use(r,c)[i]; k[v(56,(8*(i))+ 8)] = ss[0]; \
ss[1] ^= ss[0]; k[v(56,(8*(i))+ 9)] = ss[1]; \
ss[2] ^= ss[1]; k[v(56,(8*(i))+10)] = ss[2]; \
ss[3] ^= ss[2]; k[v(56,(8*(i))+11)] = ss[3]; \
}
aes_rval aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1])
{ uint_32t ss[9];
#if defined( d_vars )
d_vars;
#endif
cx->ks[v(56,(0))] = ss[0] = word_in(key, 0);
cx->ks[v(56,(1))] = ss[1] = word_in(key, 1);
cx->ks[v(56,(2))] = ss[2] = word_in(key, 2);
cx->ks[v(56,(3))] = ss[3] = word_in(key, 3);
#if DEC_UNROLL == NONE
cx->ks[v(56,(4))] = ss[4] = word_in(key, 4);
cx->ks[v(56,(5))] = ss[5] = word_in(key, 5);
cx->ks[v(56,(6))] = ss[6] = word_in(key, 6);
cx->ks[v(56,(7))] = ss[7] = word_in(key, 7);
{ uint_32t i;
for(i = 0; i < 6; ++i)
k8e(cx->ks, i);
k8ef(cx->ks, 6);
#if !(DEC_ROUND == NO_TABLES)
for(i = N_COLS; i < 14 * N_COLS; ++i)
cx->ks[i] = inv_mcol(cx->ks[i]);
#endif
}
#else
cx->ks[v(56,(4))] = ff(ss[4] = word_in(key, 4));
cx->ks[v(56,(5))] = ff(ss[5] = word_in(key, 5));
cx->ks[v(56,(6))] = ff(ss[6] = word_in(key, 6));
cx->ks[v(56,(7))] = ff(ss[7] = word_in(key, 7));
kdf8(cx->ks, 0); kd8(cx->ks, 1);
kd8(cx->ks, 2); kd8(cx->ks, 3);
kd8(cx->ks, 4); kd8(cx->ks, 5);
kdl8(cx->ks, 6);
#endif
cx->inf.l = 0;
cx->inf.b[0] = 14 * 16;
#ifdef USE_VIA_ACE_IF_PRESENT
if(VIA_ACE_AVAILABLE)
cx->inf.b[1] = 0xff;
#endif
#if defined( AES_ERR_CHK )
return EXIT_SUCCESS;
#endif
}
#endif
#if defined(AES_VAR)
aes_rval aes_decrypt_key(const unsigned char *key, int key_len, aes_decrypt_ctx cx[1])
{
switch(key_len)
{
#if defined( AES_ERR_CHK )
case 16: case 128: return aes_decrypt_key128(key, cx);
case 24: case 192: return aes_decrypt_key192(key, cx);
case 32: case 256: return aes_decrypt_key256(key, cx);
default: return EXIT_FAILURE;
#else
case 16: case 128: aes_decrypt_key128(key, cx); return;
case 24: case 192: aes_decrypt_key192(key, cx); return;
case 32: case 256: aes_decrypt_key256(key, cx); return;
#endif
}
}
#endif
#endif
#if defined(__cplusplus)
}
#endif