Kennwortmanager KeePassX Weiterentwicklung der Version 1
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This repo is archived. You can view files and clone it, but cannot push or open issues/pull-requests.
keepassx1/src/crypto/aes_modes.c

873 lines
29 KiB

/**************************************************************************
* *
* Copyright (C) 2007 by Tarek Saidi <tarek.saidi@arcor.de> *
* Copyright (c) 2003 Dr Brian Gladman, Worcester, UK *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; version 2 of the License. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#include <memory.h>
#include <assert.h>
#include "aesopt.h"
#if defined( AES_MODES )
#if defined(__cplusplus)
extern "C"
{
#endif
#if defined( _MSC_VER ) && ( _MSC_VER > 800 )
#pragma intrinsic(memcpy)
#define in_line __inline
#else
#define in_line
#endif
#define BFR_BLOCKS 8
/* These values are used to detect long word alignment in order to */
/* speed up some buffer operations. This facility may not work on */
/* some machines so this define can be commented out if necessary */
#define FAST_BUFFER_OPERATIONS
#pragma warning( disable : 4311 4312 )
#define lp08(x) ((uint_8t*)(x))
#define lp32(x) ((uint_32t*)(x))
#define addr_mod_04(x) ((unsigned long)(x) & 3)
#define addr_mod_16(x) ((unsigned long)(x) & 15)
#if defined( USE_VIA_ACE_IF_PRESENT )
#include "via_ace.h"
#pragma pack(16)
aligned_array(unsigned long, enc_gen_table, 12, 16) = NEH_ENC_GEN_DATA;
aligned_array(unsigned long, enc_load_table, 12, 16) = NEH_ENC_LOAD_DATA;
aligned_array(unsigned long, enc_hybrid_table, 12, 16) = NEH_ENC_HYBRID_DATA;
aligned_array(unsigned long, dec_gen_table, 12, 16) = NEH_DEC_GEN_DATA;
aligned_array(unsigned long, dec_load_table, 12, 16) = NEH_DEC_LOAD_DATA;
aligned_array(unsigned long, dec_hybrid_table, 12, 16) = NEH_DEC_HYBRID_DATA;
/* NOTE: These control word macros must only be used after */
/* a key has been set up because they depend on key size */
#if NEH_KEY_TYPE == NEH_LOAD
#define kd_adr(c) ((uint_8t*)(c)->ks)
#elif NEH_KEY_TYPE == NEH_GENERATE
#define kd_adr(c) ((uint_8t*)(c)->ks + (c)->inf.b[0])
#else
#define kd_adr(c) ((uint_8t*)(c)->ks + ((c)->inf.b[0] == 160 ? 160 : 0))
#endif
#else
#define aligned_array(type, name, no, stride) type name[no]
#define aligned_auto(type, name, no, stride) type name[no]
#endif
#if defined( _MSC_VER ) && _MSC_VER > 1200
#define via_cwd(cwd, ty, dir, len) unsigned long* cwd = (dir##_##ty##_table + ((len - 128) >> 4))
#else
#define via_cwd(cwd, ty, dir, len) \
aligned_auto(unsigned long, cwd, 4, 16); \
cwd[1] = cwd[2] = cwd[3] = 0; \
cwd[0] = neh_##dir##_##ty##_key(len)
#endif
aes_rval aes_mode_reset(aes_encrypt_ctx ctx[1])
{
ctx->inf.b[2] = 0;
return EXIT_SUCCESS;
}
aes_rval aes_ecb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
int len, const aes_encrypt_ctx ctx[1])
{ int nb = len >> 4;
if(len & (AES_BLOCK_SIZE - 1))
return EXIT_FAILURE;
#if defined( USE_VIA_ACE_IF_PRESENT )
if(ctx->inf.b[1] == 0xff)
{ uint_8t *ksp = (uint_8t*)(ctx->ks);
via_cwd(cwd, hybrid, enc, 2* ctx->inf.b[0] - 192);
if(addr_mod_16(ctx))
return EXIT_FAILURE;
if(!addr_mod_16(ibuf) && !addr_mod_16(obuf))
{
via_ecb_op5(ksp,cwd,ibuf,obuf,nb);
}
else
{ aligned_auto(uint_8t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
uint_8t *ip, *op;
while(nb)
{
int m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb);
ip = (addr_mod_16(ibuf) ? buf : (uint_8t*)ibuf);
op = (addr_mod_16(obuf) ? buf : obuf);
if(ip != ibuf)
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
via_ecb_op5(ksp,cwd,ip,op,m);
if(op != obuf)
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
ibuf += m * AES_BLOCK_SIZE;
obuf += m * AES_BLOCK_SIZE;
nb -= m;
}
}
return EXIT_SUCCESS;
}
#endif
#if !defined( ASSUME_VIA_ACE_PRESENT )
while(nb--)
{
aes_encrypt(ibuf, obuf, ctx);
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
}
#endif
return EXIT_SUCCESS;
}
aes_rval aes_ecb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
int len, const aes_decrypt_ctx ctx[1])
{ int nb = len >> 4;
if(len & (AES_BLOCK_SIZE - 1))
return EXIT_FAILURE;
#if defined( USE_VIA_ACE_IF_PRESENT )
if(ctx->inf.b[1] == 0xff)
{ uint_8t *ksp = kd_adr(ctx);
via_cwd(cwd, hybrid, dec, 2* ctx->inf.b[0] - 192);
if(addr_mod_16(ctx))
return EXIT_FAILURE;
if(!addr_mod_16(ibuf) && !addr_mod_16(obuf))
{
via_ecb_op5(ksp,cwd,ibuf,obuf,nb);
}
else
{ aligned_auto(uint_8t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
uint_8t *ip, *op;
while(nb)
{
int m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb);
ip = (addr_mod_16(ibuf) ? buf : (uint_8t*)ibuf);
op = (addr_mod_16(obuf) ? buf : obuf);
if(ip != ibuf)
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
via_ecb_op5(ksp,cwd,ip,op,m);
if(op != obuf)
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
ibuf += m * AES_BLOCK_SIZE;
obuf += m * AES_BLOCK_SIZE;
nb -= m;
}
}
return EXIT_SUCCESS;
}
#endif
#if !defined( ASSUME_VIA_ACE_PRESENT )
while(nb--)
{
aes_decrypt(ibuf, obuf, ctx);
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
}
#endif
return EXIT_SUCCESS;
}
aes_rval aes_cbc_encrypt(const unsigned char *ibuf, unsigned char *obuf,
int len, unsigned char *iv, const aes_encrypt_ctx ctx[1])
{ int nb = len >> 4;
if(len & (AES_BLOCK_SIZE - 1))
return EXIT_FAILURE;
#if defined( USE_VIA_ACE_IF_PRESENT )
if(ctx->inf.b[1] == 0xff)
{ uint_8t *ksp = (uint_8t*)(ctx->ks), *ivp = iv;
aligned_auto(uint_8t, liv, AES_BLOCK_SIZE, 16);
via_cwd(cwd, hybrid, enc, 2* ctx->inf.b[0] - 192);
if(addr_mod_16(ctx))
return EXIT_FAILURE;
if(addr_mod_16(iv)) /* ensure an aligned iv */
{
ivp = liv;
memcpy(liv, iv, AES_BLOCK_SIZE);
}
if(!addr_mod_16(ibuf) && !addr_mod_16(obuf) && !addr_mod_16(iv))
{
via_cbc_op7(ksp,cwd,ibuf,obuf,nb,ivp,ivp);
}
else
{ aligned_auto(uint_8t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
uint_8t *ip, *op;
while(nb)
{
int m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb);
ip = (addr_mod_16(ibuf) ? buf : (uint_8t*)ibuf);
op = (addr_mod_16(obuf) ? buf : obuf);
if(ip != ibuf)
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
via_cbc_op7(ksp,cwd,ip,op,m,ivp,ivp);
if(op != obuf)
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
ibuf += m * AES_BLOCK_SIZE;
obuf += m * AES_BLOCK_SIZE;
nb -= m;
}
}
if(iv != ivp)
memcpy(iv, ivp, AES_BLOCK_SIZE);
return EXIT_SUCCESS;
}
#endif
#if !defined( ASSUME_VIA_ACE_PRESENT )
# ifdef FAST_BUFFER_OPERATIONS
if(!addr_mod_04(ibuf) && !addr_mod_04(iv))
while(nb--)
{
lp32(iv)[0] ^= lp32(ibuf)[0];
lp32(iv)[1] ^= lp32(ibuf)[1];
lp32(iv)[2] ^= lp32(ibuf)[2];
lp32(iv)[3] ^= lp32(ibuf)[3];
aes_encrypt(iv, iv, ctx);
memcpy(obuf, iv, AES_BLOCK_SIZE);
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
}
else
# endif
while(nb--)
{
iv[ 0] ^= ibuf[ 0]; iv[ 1] ^= ibuf[ 1];
iv[ 2] ^= ibuf[ 2]; iv[ 3] ^= ibuf[ 3];
iv[ 4] ^= ibuf[ 4]; iv[ 5] ^= ibuf[ 5];
iv[ 6] ^= ibuf[ 6]; iv[ 7] ^= ibuf[ 7];
iv[ 8] ^= ibuf[ 8]; iv[ 9] ^= ibuf[ 9];
iv[10] ^= ibuf[10]; iv[11] ^= ibuf[11];
iv[12] ^= ibuf[12]; iv[13] ^= ibuf[13];
iv[14] ^= ibuf[14]; iv[15] ^= ibuf[15];
aes_encrypt(iv, iv, ctx);
memcpy(obuf, iv, AES_BLOCK_SIZE);
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
}
#endif
return EXIT_SUCCESS;
}
aes_rval aes_cbc_decrypt(const unsigned char *ibuf, unsigned char *obuf,
int len, unsigned char *iv, const aes_decrypt_ctx ctx[1])
{ unsigned char tmp[AES_BLOCK_SIZE];
int nb = len >> 4;
if(len & (AES_BLOCK_SIZE - 1))
return EXIT_FAILURE;
#if defined( USE_VIA_ACE_IF_PRESENT )
if(ctx->inf.b[1] == 0xff)
{ uint_8t *ksp = kd_adr(ctx), *ivp = iv;
aligned_auto(uint_8t, liv, AES_BLOCK_SIZE, 16);
via_cwd(cwd, hybrid, dec, 2* ctx->inf.b[0] - 192);
if(addr_mod_16(ctx))
return EXIT_FAILURE;
if(addr_mod_16(iv)) /* ensure an aligned iv */
{
ivp = liv;
memcpy(liv, iv, AES_BLOCK_SIZE);
}
if(!addr_mod_16(ibuf) && !addr_mod_16(obuf) && !addr_mod_16(iv))
{
via_cbc_op6(ksp,cwd,ibuf,obuf,nb,ivp);
}
else
{ aligned_auto(uint_8t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
uint_8t *ip, *op;
while(nb)
{
int m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb);
ip = (addr_mod_16(ibuf) ? buf : (uint_8t*)ibuf);
op = (addr_mod_16(obuf) ? buf : obuf);
if(ip != ibuf)
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
via_cbc_op6(ksp,cwd,ip,op,m,ivp);
if(op != obuf)
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
ibuf += m * AES_BLOCK_SIZE;
obuf += m * AES_BLOCK_SIZE;
nb -= m;
}
}
if(iv != ivp)
memcpy(iv, ivp, AES_BLOCK_SIZE);
return EXIT_SUCCESS;
}
#endif
#if !defined( ASSUME_VIA_ACE_PRESENT )
# ifdef FAST_BUFFER_OPERATIONS
if(!addr_mod_04(obuf) && !addr_mod_04(iv))
while(nb--)
{
memcpy(tmp, ibuf, AES_BLOCK_SIZE);
aes_decrypt(ibuf, obuf, ctx);
lp32(obuf)[0] ^= lp32(iv)[0];
lp32(obuf)[1] ^= lp32(iv)[1];
lp32(obuf)[2] ^= lp32(iv)[2];
lp32(obuf)[3] ^= lp32(iv)[3];
memcpy(iv, tmp, AES_BLOCK_SIZE);
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
}
else
# endif
while(nb--)
{
memcpy(tmp, ibuf, AES_BLOCK_SIZE);
aes_decrypt(ibuf, obuf, ctx);
obuf[ 0] ^= iv[ 0]; obuf[ 1] ^= iv[ 1];
obuf[ 2] ^= iv[ 2]; obuf[ 3] ^= iv[ 3];
obuf[ 4] ^= iv[ 4]; obuf[ 5] ^= iv[ 5];
obuf[ 6] ^= iv[ 6]; obuf[ 7] ^= iv[ 7];
obuf[ 8] ^= iv[ 8]; obuf[ 9] ^= iv[ 9];
obuf[10] ^= iv[10]; obuf[11] ^= iv[11];
obuf[12] ^= iv[12]; obuf[13] ^= iv[13];
obuf[14] ^= iv[14]; obuf[15] ^= iv[15];
memcpy(iv, tmp, AES_BLOCK_SIZE);
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
}
#endif
return EXIT_SUCCESS;
}
aes_rval aes_cfb_encrypt(const unsigned char *ibuf, unsigned char *obuf,
int len, unsigned char *iv, aes_encrypt_ctx ctx[1])
{ int cnt = 0, b_pos = (int)ctx->inf.b[2], nb;
if(b_pos) /* complete any partial block */
{
while(b_pos < AES_BLOCK_SIZE && cnt < len)
*obuf++ = iv[b_pos++] ^= *ibuf++, cnt++;
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
}
if((nb = (len - cnt) >> 4) != 0) /* process whole blocks */
{
#if defined( USE_VIA_ACE_IF_PRESENT )
if(ctx->inf.b[1] == 0xff)
{ int m;
uint_8t *ksp = (uint_8t*)(ctx->ks), *ivp = iv;
aligned_auto(uint_8t, liv, AES_BLOCK_SIZE, 16);
via_cwd(cwd, hybrid, enc, 2* ctx->inf.b[0] - 192);
if(addr_mod_16(ctx))
return EXIT_FAILURE;
if(addr_mod_16(iv)) /* ensure an aligned iv */
{
ivp = liv;
memcpy(liv, iv, AES_BLOCK_SIZE);
}
if(!addr_mod_16(ibuf) && !addr_mod_16(obuf))
{
via_cfb_op7(ksp, cwd, ibuf, obuf, nb, ivp, ivp);
ibuf += nb * AES_BLOCK_SIZE;
obuf += nb * AES_BLOCK_SIZE;
cnt += nb * AES_BLOCK_SIZE;
}
else /* input, output or both are unaligned */
{ aligned_auto(uint_8t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
uint_8t *ip, *op;
while(nb)
{
m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb), nb -= m;
ip = (addr_mod_16(ibuf) ? buf : (uint_8t*)ibuf);
op = (addr_mod_16(obuf) ? buf : obuf);
if(ip != ibuf)
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
via_cfb_op7(ksp, cwd, ip, op, m, ivp, ivp);
if(op != obuf)
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
ibuf += m * AES_BLOCK_SIZE;
obuf += m * AES_BLOCK_SIZE;
cnt += m * AES_BLOCK_SIZE;
}
}
if(ivp != iv)
memcpy(iv, ivp, AES_BLOCK_SIZE);
}
#else
# ifdef FAST_BUFFER_OPERATIONS
if(!addr_mod_04(ibuf) && !addr_mod_04(obuf) && !addr_mod_04(iv))
while(cnt + AES_BLOCK_SIZE <= len)
{
assert(b_pos == 0);
aes_encrypt(iv, iv, ctx);
lp32(obuf)[0] = lp32(iv)[0] ^= lp32(ibuf)[0];
lp32(obuf)[1] = lp32(iv)[1] ^= lp32(ibuf)[1];
lp32(obuf)[2] = lp32(iv)[2] ^= lp32(ibuf)[2];
lp32(obuf)[3] = lp32(iv)[3] ^= lp32(ibuf)[3];
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
cnt += AES_BLOCK_SIZE;
}
else
# endif
while(cnt + AES_BLOCK_SIZE <= len)
{
assert(b_pos == 0);
aes_encrypt(iv, iv, ctx);
obuf[ 0] = iv[ 0] ^= ibuf[ 0]; obuf[ 1] = iv[ 1] ^= ibuf[ 1];
obuf[ 2] = iv[ 2] ^= ibuf[ 2]; obuf[ 3] = iv[ 3] ^= ibuf[ 3];
obuf[ 4] = iv[ 4] ^= ibuf[ 4]; obuf[ 5] = iv[ 5] ^= ibuf[ 5];
obuf[ 6] = iv[ 6] ^= ibuf[ 6]; obuf[ 7] = iv[ 7] ^= ibuf[ 7];
obuf[ 8] = iv[ 8] ^= ibuf[ 8]; obuf[ 9] = iv[ 9] ^= ibuf[ 9];
obuf[10] = iv[10] ^= ibuf[10]; obuf[11] = iv[11] ^= ibuf[11];
obuf[12] = iv[12] ^= ibuf[12]; obuf[13] = iv[13] ^= ibuf[13];
obuf[14] = iv[14] ^= ibuf[14]; obuf[15] = iv[15] ^= ibuf[15];
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
cnt += AES_BLOCK_SIZE;
}
#endif
}
while(cnt < len)
{
if(!b_pos)
aes_ecb_encrypt(iv, iv, AES_BLOCK_SIZE, ctx);
while(cnt < len && b_pos < AES_BLOCK_SIZE)
*obuf++ = iv[b_pos++] ^= *ibuf++, cnt++;
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
}
ctx->inf.b[2] = b_pos;
return EXIT_SUCCESS;
}
aes_rval aes_cfb_decrypt(const unsigned char *ibuf, unsigned char *obuf,
int len, unsigned char *iv, aes_encrypt_ctx ctx[1])
{ int cnt = 0, b_pos = (int)ctx->inf.b[2], nb;
if(b_pos) /* complete any partial block */
{ uint_8t t;
while(b_pos < AES_BLOCK_SIZE && cnt < len)
t = *ibuf++, *obuf++ = t ^ iv[b_pos], iv[b_pos++] = t, cnt++;
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
}
if((nb = (len - cnt) >> 4) != 0) /* process whole blocks */
{
#if defined( USE_VIA_ACE_IF_PRESENT )
if(ctx->inf.b[1] == 0xff)
{ int m;
uint_8t *ksp = (uint_8t*)(ctx->ks), *ivp = iv;
aligned_auto(uint_8t, liv, AES_BLOCK_SIZE, 16);
via_cwd(cwd, hybrid, dec, 2* ctx->inf.b[0] - 192);
if(addr_mod_16(ctx))
return EXIT_FAILURE;
if(addr_mod_16(iv)) /* ensure an aligned iv */
{
ivp = liv;
memcpy(liv, iv, AES_BLOCK_SIZE);
}
if(!addr_mod_16(ibuf) && !addr_mod_16(obuf))
{
via_cfb_op6(ksp, cwd, ibuf, obuf, nb, ivp);
ibuf += nb * AES_BLOCK_SIZE;
obuf += nb * AES_BLOCK_SIZE;
cnt += nb * AES_BLOCK_SIZE;
}
else /* input, output or both are unaligned */
{ aligned_auto(uint_8t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
uint_8t *ip, *op;
while(nb)
{
m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb), nb -= m;
ip = (addr_mod_16(ibuf) ? buf : (uint_8t*)ibuf);
op = (addr_mod_16(obuf) ? buf : op);
if(ip != ibuf)
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
via_cfb_op6(ksp, cwd, ip, op, m, ivp);
if(op != obuf)
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
ibuf += m * AES_BLOCK_SIZE;
obuf += m * AES_BLOCK_SIZE;
cnt += m * AES_BLOCK_SIZE;
}
}
if(ivp != iv)
memcpy(iv, ivp, AES_BLOCK_SIZE);
}
#else
# ifdef FAST_BUFFER_OPERATIONS
if(!addr_mod_04(ibuf) && !addr_mod_04(obuf) &&!addr_mod_04(iv))
while(cnt + AES_BLOCK_SIZE <= len)
{ uint_32t t;
assert(b_pos == 0);
aes_encrypt(iv, iv, ctx);
t = lp32(ibuf)[0], lp32(obuf)[0] = t ^ lp32(iv)[0], lp32(iv)[0] = t;
t = lp32(ibuf)[1], lp32(obuf)[1] = t ^ lp32(iv)[1], lp32(iv)[1] = t;
t = lp32(ibuf)[2], lp32(obuf)[2] = t ^ lp32(iv)[2], lp32(iv)[2] = t;
t = lp32(ibuf)[3], lp32(obuf)[3] = t ^ lp32(iv)[3], lp32(iv)[3] = t;
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
cnt += AES_BLOCK_SIZE;
}
else
# endif
while(cnt + AES_BLOCK_SIZE <= len)
{ uint_8t t;
assert(b_pos == 0);
aes_encrypt(iv, iv, ctx);
t = ibuf[ 0], obuf[ 0] = t ^ iv[ 0], iv[ 0] = t;
t = ibuf[ 1], obuf[ 1] = t ^ iv[ 1], iv[ 1] = t;
t = ibuf[ 2], obuf[ 2] = t ^ iv[ 2], iv[ 2] = t;
t = ibuf[ 3], obuf[ 3] = t ^ iv[ 3], iv[ 3] = t;
t = ibuf[ 4], obuf[ 4] = t ^ iv[ 4], iv[ 4] = t;
t = ibuf[ 5], obuf[ 5] = t ^ iv[ 5], iv[ 5] = t;
t = ibuf[ 6], obuf[ 6] = t ^ iv[ 6], iv[ 6] = t;
t = ibuf[ 7], obuf[ 7] = t ^ iv[ 7], iv[ 7] = t;
t = ibuf[ 8], obuf[ 8] = t ^ iv[ 8], iv[ 8] = t;
t = ibuf[ 9], obuf[ 9] = t ^ iv[ 9], iv[ 9] = t;
t = ibuf[10], obuf[10] = t ^ iv[10], iv[10] = t;
t = ibuf[11], obuf[11] = t ^ iv[11], iv[11] = t;
t = ibuf[12], obuf[12] = t ^ iv[12], iv[12] = t;
t = ibuf[13], obuf[13] = t ^ iv[13], iv[13] = t;
t = ibuf[14], obuf[14] = t ^ iv[14], iv[14] = t;
t = ibuf[15], obuf[15] = t ^ iv[15], iv[15] = t;
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
cnt += AES_BLOCK_SIZE;
}
#endif
}
while(cnt < len)
{ uint_8t t;
if(!b_pos)
aes_ecb_encrypt(iv, iv, AES_BLOCK_SIZE, ctx);
while(cnt < len && b_pos < AES_BLOCK_SIZE)
t = *ibuf++, *obuf++ = t ^ iv[b_pos], iv[b_pos++] = t, cnt++;
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
}
ctx->inf.b[2] = b_pos;
return EXIT_SUCCESS;
}
aes_rval aes_ofb_crypt(const unsigned char *ibuf, unsigned char *obuf,
int len, unsigned char *iv, aes_encrypt_ctx ctx[1])
{ int cnt = 0, b_pos = (int)ctx->inf.b[2], nb;
if(b_pos) /* complete any partial block */
{
while(b_pos < AES_BLOCK_SIZE && cnt < len)
*obuf++ = iv[b_pos++] ^ *ibuf++, cnt++;
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
}
if((nb = (len - cnt) >> 4) != 0) /* process whole blocks */
{
#if defined( USE_VIA_ACE_IF_PRESENT )
if(ctx->inf.b[1] == 0xff)
{ int m;
uint_8t *ksp = (uint_8t*)(ctx->ks), *ivp = iv;
aligned_auto(uint_8t, liv, AES_BLOCK_SIZE, 16);
via_cwd(cwd, hybrid, enc, 2* ctx->inf.b[0] - 192);
if(addr_mod_16(ctx))
return EXIT_FAILURE;
if(addr_mod_16(iv)) /* ensure an aligned iv */
{
ivp = liv;
memcpy(liv, iv, AES_BLOCK_SIZE);
}
if(!addr_mod_16(ibuf) && !addr_mod_16(obuf))
{
via_ofb_op6(ksp, cwd, ibuf, obuf, nb, ivp);
ibuf += nb * AES_BLOCK_SIZE;
obuf += nb * AES_BLOCK_SIZE;
cnt += nb * AES_BLOCK_SIZE;
}
else /* input, output or both are unaligned */
{ aligned_auto(uint_8t, buf, BFR_BLOCKS * AES_BLOCK_SIZE, 16);
uint_8t *ip, *op;
while(nb)
{
m = (nb > BFR_BLOCKS ? BFR_BLOCKS : nb), nb -= m;
ip = (addr_mod_16(ibuf) ? buf : (uint_8t*)ibuf);
op = (addr_mod_16(obuf) ? buf : obuf);
if(ip != ibuf)
memcpy(buf, ibuf, m * AES_BLOCK_SIZE);
via_ofb_op6(ksp, cwd, ip, op, m, ivp);
if(op != obuf)
memcpy(obuf, buf, m * AES_BLOCK_SIZE);
ibuf += m * AES_BLOCK_SIZE;
obuf += m * AES_BLOCK_SIZE;
cnt += m * AES_BLOCK_SIZE;
}
}
if(ivp != iv)
memcpy(iv, ivp, AES_BLOCK_SIZE);
}
#else
# ifdef FAST_BUFFER_OPERATIONS
if(!addr_mod_04(ibuf) && !addr_mod_04(obuf) && !addr_mod_04(iv))
while(cnt + AES_BLOCK_SIZE <= len)
{
assert(b_pos == 0);
aes_encrypt(iv, iv, ctx);
lp32(obuf)[0] = lp32(iv)[0] ^ lp32(ibuf)[0];
lp32(obuf)[1] = lp32(iv)[1] ^ lp32(ibuf)[1];
lp32(obuf)[2] = lp32(iv)[2] ^ lp32(ibuf)[2];
lp32(obuf)[3] = lp32(iv)[3] ^ lp32(ibuf)[3];
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
cnt += AES_BLOCK_SIZE;
}
else
# endif
while(cnt + AES_BLOCK_SIZE <= len)
{
assert(b_pos == 0);
aes_encrypt(iv, iv, ctx);
obuf[ 0] = iv[ 0] ^ ibuf[ 0]; obuf[ 1] = iv[ 1] ^ ibuf[ 1];
obuf[ 2] = iv[ 2] ^ ibuf[ 2]; obuf[ 3] = iv[ 3] ^ ibuf[ 3];
obuf[ 4] = iv[ 4] ^ ibuf[ 4]; obuf[ 5] = iv[ 5] ^ ibuf[ 5];
obuf[ 6] = iv[ 6] ^ ibuf[ 6]; obuf[ 7] = iv[ 7] ^ ibuf[ 7];
obuf[ 8] = iv[ 8] ^ ibuf[ 8]; obuf[ 9] = iv[ 9] ^ ibuf[ 9];
obuf[10] = iv[10] ^ ibuf[10]; obuf[11] = iv[11] ^ ibuf[11];
obuf[12] = iv[12] ^ ibuf[12]; obuf[13] = iv[13] ^ ibuf[13];
obuf[14] = iv[14] ^ ibuf[14]; obuf[15] = iv[15] ^ ibuf[15];
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
cnt += AES_BLOCK_SIZE;
}
#endif
}
while(cnt < len)
{
if(!b_pos)
aes_ecb_encrypt(iv, iv, AES_BLOCK_SIZE, ctx);
while(cnt < len && b_pos < AES_BLOCK_SIZE)
*obuf++ = iv[b_pos++] ^ *ibuf++, cnt++;
b_pos = (b_pos == AES_BLOCK_SIZE ? 0 : b_pos);
}
ctx->inf.b[2] = b_pos;
return EXIT_SUCCESS;
}
#define BFR_LENGTH (BFR_BLOCKS * AES_BLOCK_SIZE)
aes_rval aes_ctr_crypt(const unsigned char *ibuf, unsigned char *obuf,
int len, unsigned char *cbuf, cbuf_inc ctr_inc, aes_encrypt_ctx ctx[1])
{ uint_8t *ip;
int i, blen, b_pos = (int)(ctx->inf.b[2]);
#if defined( USE_VIA_ACE_IF_PRESENT )
aligned_auto(uint_8t, buf, BFR_LENGTH, 16);
if(ctx->inf.b[1] == 0xff && addr_mod_16(ctx))
return EXIT_FAILURE;
#else
uint_8t buf[BFR_LENGTH];
#endif
if(b_pos)
{
memcpy(buf, cbuf, AES_BLOCK_SIZE);
aes_ecb_encrypt(buf, buf, AES_BLOCK_SIZE, ctx);
while(b_pos < AES_BLOCK_SIZE && len--)
*obuf++ = *ibuf++ ^ buf[b_pos++];
if(len)
ctr_inc(cbuf), b_pos = 0;
}
while(len)
{
blen = (len > BFR_LENGTH ? BFR_LENGTH : len), len -= blen;
for(i = 0, ip = buf; i < (blen >> 4); ++i)
{
memcpy(ip, cbuf, AES_BLOCK_SIZE);
ctr_inc(cbuf);
ip += AES_BLOCK_SIZE;
}
if(blen & (AES_BLOCK_SIZE - 1))
memcpy(ip, cbuf, AES_BLOCK_SIZE), i++;
#if defined( USE_VIA_ACE_IF_PRESENT )
if(ctx->inf.b[1] == 0xff)
{
via_cwd(cwd, hybrid, enc, 2* ctx->inf.b[0] - 192);
via_ecb_op5((ctx->ks),cwd,buf,buf,i);
}
else
#endif
aes_ecb_encrypt(buf, buf, i * AES_BLOCK_SIZE, ctx);
i = 0; ip = buf;
# ifdef FAST_BUFFER_OPERATIONS
if(!addr_mod_04(ibuf) && !addr_mod_04(obuf) && !addr_mod_04(ip))
while(i + AES_BLOCK_SIZE <= blen)
{
lp32(obuf)[0] = lp32(ibuf)[0] ^ lp32(ip)[0];
lp32(obuf)[1] = lp32(ibuf)[1] ^ lp32(ip)[1];
lp32(obuf)[2] = lp32(ibuf)[2] ^ lp32(ip)[2];
lp32(obuf)[3] = lp32(ibuf)[3] ^ lp32(ip)[3];
i += AES_BLOCK_SIZE;
ip += AES_BLOCK_SIZE;
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
}
else
#endif
while(i + AES_BLOCK_SIZE <= blen)
{
obuf[ 0] = ibuf[ 0] ^ ip[ 0]; obuf[ 1] = ibuf[ 1] ^ ip[ 1];
obuf[ 2] = ibuf[ 2] ^ ip[ 2]; obuf[ 3] = ibuf[ 3] ^ ip[ 3];
obuf[ 4] = ibuf[ 4] ^ ip[ 4]; obuf[ 5] = ibuf[ 5] ^ ip[ 5];
obuf[ 6] = ibuf[ 6] ^ ip[ 6]; obuf[ 7] = ibuf[ 7] ^ ip[ 7];
obuf[ 8] = ibuf[ 8] ^ ip[ 8]; obuf[ 9] = ibuf[ 9] ^ ip[ 9];
obuf[10] = ibuf[10] ^ ip[10]; obuf[11] = ibuf[11] ^ ip[11];
obuf[12] = ibuf[12] ^ ip[12]; obuf[13] = ibuf[13] ^ ip[13];
obuf[14] = ibuf[14] ^ ip[14]; obuf[15] = ibuf[15] ^ ip[15];
i += AES_BLOCK_SIZE;
ip += AES_BLOCK_SIZE;
ibuf += AES_BLOCK_SIZE;
obuf += AES_BLOCK_SIZE;
}
while(i++ < blen)
*obuf++ = *ibuf++ ^ ip[b_pos++];
}
ctx->inf.b[2] = b_pos;
return EXIT_SUCCESS;
}
#if defined(__cplusplus)
}
#endif
#endif